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Liquid in a slot flows owing to a temperature gradient applied along its free surface. 
The thermal variation of surface tension induces a steady viscous flow directed on the 
surface from hot to cold, and recirculating below. For small aspect ratios A, giving 
flow in thin, two-dimensional slots, an asymptotic theory valid for A + 0 is used to 
obtain the fluid and thermal fields as well as the interfacial shapes. Solutions are 
obtained for both fixed lines and fixed angles at the contact between the interface and 
the solid side walls. 

1. Introduction 
Whenever a temperature gradient is imposed along the (sufficiently clean) interface 

between two immiscible fluids, motion results. This thermocapillary effect is induced 
from the balance on the interface of the jump in bulk shear stress and the surface- 
tension gradient along the interface. This interfacial stress is tranpmitted to the bulk 
by viscous forces. 

Forced thermocapillary flows occur in many combustion configurations in which a 
flame propagates over a liquid fuel. Here the large temperature gradient along the 
fuel surface and the thermocapillary flow generated can control the characteristics of 
the flame by controlling the fuel-mixing properties (see e.g. Sirignano & Glassman 
1970; Torrance 1971). Perhaps the simplest such flame-induced motion involves the 
flow of molten paraffin near the wick of a burning candle (Adler 1970). Clearly, a 
similar configuration is one involving a spot weld, where a liquid-metal pool is formed 
by a heat source. Although the material properties of the fluid are different, thermo- 
capillary effects should be involved under similar conditions. 

Thermocapillary flows are known to be important in the containerless processing 
of single crystals. Consider the configuration shown in figure 1 in which a cylindrical 
solid passes through a heating coil, melts, and then resolidifies into a single crystal of 
(it is to be hoped) high quality. The nature of the crystal formed depends on the local 
nature of the thermal, concentration and fluid-flow fields, so that there is a strong 
coupling between the fluid dynamics and the growth dynamics of the crystal. Even if 
the melt consists of a single component, and gravity is absent, there is a thermal- 
convection field in the melt (as shown), which is driven by variations in the surface 
tension with the temperature. 

Steady thermocapillary flows in thin horizontally unbounded regions have been 
examined by Levich (1962), Birikh (1966), Yih (1968, 1969) and Adler &, Sowerby 
(1970) using lubrication approximations (implicitly or explicitly) to simplify the 
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FIGURE 1. Schematic drawing of a float-zone processing configuration. The indicated convective 
flow (in the absence of gravity) is driven by thermal gradients in surface tension along the 
(liquid) melegas interface. 
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FIGURE 2. Schematic drawing of a two-dimensional slot flow having one liquid-gas interface and 
fixed side-wall contact lines (case I). The horizontal temperature difference Ta- T, is fixed 
and the lower boundary is a thermal insulator. 

analyses. The only published work on such flows in bounded regions is due t o  Babskiy, 
Sklovskaya & Sklovskiy (1973), who consider a flow in a slot of unit aspect ratio. 
Ostrach (1977) criticizes this solution and further gives an overview of thermocapillary 
flows in general. 

In order to study steady thermocapillary flows in bounded geometries we consider 
the two-dimensional layer of liquid shown in figure 2. Here the liquid is confined within 
a slot, which is differentially heated as shown. The differential heating induces a tem- 
perature gradient along the liquid-gas interface between the liquid and the gw, which 
in turn induces a surface-tension gradient along the interface. Since the length 1 of the 
layer is finite, conservation of mass requires the near-surface flow to turn around near 
the ends and recirculate below. 

In the regions away from the ends, the flow may be relatively simple, but this flow 
cannot be fully determined without two additional considerations. First, the flow in 
the end regions must be analysed in order to relate the near-surface flows to the deeper 
return flows. Secondly, in problems of this type the interface is not f i t .  This is because 
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on one hand the flow dynamics is not compatible with a planar interface (Davis, Liu & 
Sealy 1974), and on the other hand a planar interface may not be compatible with the 
contact angles (both static and dynamic) at  the ends. In  the end regions the fluid 
meets the solid at  an angle 8 as shown in figure 2. This dynamic contact angle may be 
less than, equal to, or greater than, 90". It depends not only on the specific materials 
present but on the dynamics of the fluid flow. Its value can be part of the solution of 
this free-boundary problem. Thus we see that the turning flows, the flow in the core 
region, the interface shape, and the dynamic contact angle are all tightly coupled 
together, with the end flows playing a critical role. 

In  the present analysis we examine steady thermocapillary flows in shallow slots 
having the aspect ratio A --f 0. Here A is the ratio of the mean depth of the liquid to 
the slot length, so that our approximate scheme uses the lubrication approximation. 
Our analysis parallels that of Cormack, Leal & Imberger (1974), who consider 
buoyancy-driven convection in a slot formed by rigid boundaries,. Our analysis 
includes the added complications of surface-tension gradients on deformable inter- 
faces. We examine four different cases. We consider the flow shown in figure 2 with 
either the contact line (the line formed by the intersection of the interface and the side 
wall) fixed or the contact angle fixed. We consider a slot flow having two deformable 
interfaces rather than one solid and one fluid interface. Here we again consider either 
the contact lines fixed or the contact angles fixed. We determine in all cases the flow 
fields, the temperature fields and the interfacial shapes. 

2. Mathematical formulation 
Consider a rectangular cavity of length I and height d, as shown in figure 2. It con- 

tains an incompressible Newtonian liquid of density p, thermal diffusivity K and 
kinematic viscosity v = p/p; p is the dynamic viscosity. The end walls a t  x = 41 are 
maintained a t  temperatures TH and T, respectively, with TH > T,; the lower surface 
( y  = 0) of the cavity is thermally insulated. The upper surface, described by y = h(x), 
is a free surface bounded by a passive gas of negligible density and viscosity. This free 
surface is associated with a surface tension Q, which depends on the local temperature. 

In  the absence of gravity the steady two-dimensional motion of the liquid is 
governed by the equations 

uz+vu = 0, (2.la) 
(2.1b) 
(2.lc) 
(2 . ld)  

where u and v are respectively the horizontal and vertical velocity components, p is 
the pressure and T is the temperature of the liquid. These equations are subject to the 
following boundary conditions : 

uux + my = -p-'p, + v(u, + u,,), 
uv, + w, = -p-'p, + V(V,, + v,,), 
uTx + vT, = K(T,, + T,,), 

u = v = 0, T = TH ( X  = -41); ( 2 . 2 4  

u = v = 0, T, = 0 (y = 0); (2.2c) 
u = v = 0, T = TO ( X  = # I ) ;  (2.2b) 

v = uhx, Sijnin, = QK, (2 .24  e) 

Szjn,ti = Q ~ ,  k,T,+k,(T-Tg) = 0 (2.2f, 9)  
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Equation (2.2d) is the kinematic boundary condition a t  the liquid-gas interface. The 
stress balances at the interface in the normal and tangential directions are given 
respectively by (2.2e) and (2.2f). The jump in the normal stress across the interface 
is balanced by surface tension times curvature, and the jump in the shear stress 
equals the surface-tension gradient along the interface. In these equations Sit are the 
components of the stress tensor of the liquid, defined by 

u being the velocity vector and aij the Kronecker delta. The unit outward normal 
vector n and the unit tangent vector t are d e h e d  as follows: 

n = ( - h,, 1)/N, t = (1, h,)/N, (2.4) 

with N = (1 +hi)*. (2.5) 

The subscript s in (2.2f) denotes the directional derivative along the free surface and 
the curvature K i n  (2.2e) has the definition 

K(h) = hJN? (2.6) 

The thermal boundary condition at  the interface is given by (2.2g), in which k, is the 
thermal conductivity of the liquid and k, is the heat transfer coefficient in the gas; 
Tg is the temperature in the gas phase. The subscript n represents the normal deriva- 
tive at the interface. 

Apart from the boundary conditions (2.2), the velocity field must also satisfy the 
condition 

which follows from the fact that there exists no net mass flow into and out of the 
cavity. Furthermore, since the liquid is assumed incompressible, its total volume 
must remain constant; as a consequence the relation 

h(x)dx = v (2.8) s:, 
must hold, where l' is the total (two-dimensional) volume occupied by the liquid. 

Finally, to close the problem, we need to specify the type of contact made by 
the free surface at the end walls. We shall restrict ourselves to the following two 
cases. 

Case I: The liquid sticks to a sharp edge at the end walls with 

h( f &Z) = a. (2.9) 

Case 11: A contact angle 8 is prescribed at  each end wall so that 

h,( & +Z) = T tan (8 - &). (2.10) 

In order to determine the velocity and temperature fields in the liquid, the tem- 
perature distribution Tg in the overlying gas must be known apriori. We shall assume 
that the heated and cooled solid ends of the cavity induce a sensibly conduction- 
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dominated temperature in the gas so that a linear variation of temperature exists. 
This profile is given by 

The temperature boundary condition (2.2g) reflects the existence of a thin convective 
thermal boundary layer in the gas. 

We shall use a linear equation of state for surface tension. In particular, we take 

Tg = *(TH+Tc)-(TH-Tc)x/l- (2.11) 

40 = a0 - Y[T - + TC)L (2.12) 

where a,, is the surface tension of the liquid a t  the cavity centre, and the constant y 
is the negative of the derivative of surface tension with respect to temperature. 

We scale the problem in terms of lubrication-type variables by introducing the 
following primed quantities: 

] (2.13) 
x = ZX', y = dy', h = dh', u = u*u', v = Au*v', 

= (,UU*Z/d2)p', T-+(TH+Tc) = (TH-Tc)T", = ~ o d ,  

where the aspect ratio 
A = d/Z. (2.14) 

The characteristic velocity u* is derived from the so-called Marangoni effect, i.e. the 
jump in shear stress along the interface balances the surface-tension gradient. Thus 
using 

leads to u* = - TC)/p. (2.15) 

Note that, when the inertial effects are small, the appropriate scale for pressure is 

With these scales, the dimensionless equations (with the primes dropped) can be 

(2.16a) 

RA ( UU, + mu) = - px + A "u,, + uyv, (2.16b) 

R A 3 ( ~ ~ z + ~ u )  = - ~ y + A 2 ( A ~ x x + ~ y ) y y ) ,  ( 2 . 1 6 ~ )  

MA(uTX + vT,) = A2Tzx + Tuv. (2.16d) 

pu* I / # .  

written in the form 
u, + vy = 0, 

The Reynolds number R and the Marangoni number M have the definitions 

(2.17) 

(2.18) 

and R = P-IM, (2.10) 

where the Prandtl number P is given by 

P = V / K .  (2.20) 
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This type of scaling has been discussed by Ostrach (1977). The boundary conditions 
(2.2) transform to 

u = v = O ,  T = T *  (x=&*); ( 2 . 2 1 ~ )  

u = v = 0, Tu = O ( y  = 0); (2.21b) 

(2 .214  

(2.21d) 
(Y = h(x)). 

(2.21 e) 

(2.21f) 

(2.22) 

I w = Uh,, 

- p  + 2AZ( 1 + A2hz)-' [ (wv - h, uU) + A2h,( - W, + h, u,)] 
= A3C-l hxz( 1 + A2h:)-' (1 - A-ICT), 

= - (1 + A2h:)* (T, + h, Tv), 
(1 - A2h:) (uU + A2vX) + 2A2h,(wu -us) 

(1 +A%:)-* (T, - A%, T,) + L(T + X) = o 
In  (2.21d), C is the capillary number, given by 

c = pu*/uo = .)IA(T, - Tc)/ao. 

The capillary number measures the degree of deformation of the free surface, and 
C-t 0 implies that the mean surface tension is very large. The Biot number L is 
defined by 

L = k,d/k,  (2.23) 

and measures the heat transport between the gas and the liquid phases. The dimen- 
sionless forms of (2.7) and (2.8) are as follows: 

udy = 0, 5,"'"' 
+ 
-+ 1 h ( X ) d X  = 

7 = v/az. 

(2.24) 

(2.26) 

(2.26) 

The two cases of contact-line conditions are as follows: 

h( k i) = 1, (2.27) 

h x ( k # )  = TA-ltan(O-#n). (2.28) 

We eliminate the pressure from the momentum equations (2.16b) c) and introduce a 
stream function @ such that 

u =  @u, v = -@,. ( 2 . 2 9 ~ )  

We obtain for the momentum equation 

R A ~ ( ~ - , @ ~ , - @ x @ ~ y y ~ + A 2 ( ~ ~ ~ x x x - @ x @ x x , ~ >  = @ u y u v + ~ ~ 2 ~ x x y 2 / + ~ 4 @ x x x x '  

(2.29b) 

For the present purpose we consider that the cavity has a small aspect ratio 
( A  Q 1). In  particular, we treat the problem in the asymptotic limit A +  0. In this 
limit (see Cormack et al. 1974) the entire flow field can be divided into two distinct 
regions: an outer (core) region away from the end walls where the flow is relatively 
simple, and an inner (boundary-layer) region near each end wall where the flow turns 
around, to conserve mass, and recirculates. The core flow, the shape of the interface 
and the turning flows are all coupled together. Therefore the complete flow structure 
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can only be determined by solving the flow in the inner and outer regions separately 
and then joining them by the use of an asymptotic matching procedure. This will be 
carried out in detail for the case where the liquid sticks to a sharp edge a t  the end walls. 
Results for other types of contact are presented later. Our analysis is based on the 
following asymptotic limits of the dimensionless parameters : 

R = R A ,  M = B A ,  C = CA4, L = O ( l ) ,  (2.30 a-d ) 

with w, B and c all O( 1). The limit R = R A  is based on the assumption of slow liquid 
motion, so that to the leading approximation the inertial terms in the momentum 
equations do not play any role. The limit M = B A  follows from the assumption that 
the Marangoni number is sufficiently small; as a result the convective terms in the 
energy equation can be ignored, to leading order. In particular, we consider small 
departure from the state of pure conduction. The combination R = O(A) and 
M = O(A)  implies that the Prandtl number of the liquid is of order unity. Various 
other limiting values of R and M can be considered, corresponding to small and large 
values of the Prandtl number. 

The distinguished limit C = c A 4  on the capillary number is chosen rather carefully. 
It is found that a value of C larger than that given in ( 2 . 3 0 ~ )  results in a non-zero-mean 
plane Couette flow away from the walls; this is physically unacceptable since the 
core flow, to conserve mass, must reverse its direction somewhere along the vertical. 
On the other hand, if C is any smaller than the value prescribed in (2.30c), then the 
first non-trivial correction to the free-surface height from a flat interface appears at  a 
higher order of approximation. 

3. The outer (core) flow 
In  the work to be presented here, we consider the case where the liquid just fills the 

cavity so that V = dl (i.e. = l),  and we prescribe the contact condition (2.27) of 
fixed position. 

We look for a solution which, to a leading approximation, consists of a parallel flow 
in the core with a flat interface. Accordingly, we set the values given in (2.30) for the 
dimensionless parameters and write the expansions 

( 3 . 1 ~ )  

(3.121) 

( 3 . 1 ~ )  

( 3 . l d )  

Substituting these in (2.29) and (2 .16d)  and the boundary conditions (2.21),  we find 
to leading order 

9oyyyy = 0, Toyy = 0, (3.2a, b )  

with 9 0  = @ o x  = 0, To = T i  (z = **); ( 3 . 3 ~ )  

9 0  = $w = 0, Toy = 0 (9 = 0) ;  (3.3b) 

$ox = 0, - P O  = C'-lhlm, (3.3c, a )  
)l.oyu+Toz = 0, Tw+L(To+z) = 0 (3 .3e , f  1 
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We also have +o(l) = 0, (3.4) 

which follows from the condition (2.24) of zero mass flux, and the fact that +o(0) = 0. 
The solution for 5"' that satisfies (3.2b), (3.3b) and (3.3f) is simply 

To = -z, (3.5) 

so that the liquid temperature at leading order follows the gas temperature, indepen- 
dent of the Biot number. 

The solution for +o satisfying (3.2a), (3.3b, c, e) and (3.4) is 

$0 = &Y"Y - 1). (3.6) 

Clearly, the parabolic velocity field associated with +o is parallel to the bottom 
surface of the cavity; as a result, it cannot satisfy the boundary conditions (3.3~) 
prescribed a t  the end walls. This outer flow must therefore be joined (see Cormack 
eta2.1974) to the (non-parallel) turning flows at  the ends using an asymptotic matching 
procedure. Note, however, that the temperature field To satisfies the boundary con- 
ditions at both end walls, and consequently does not exhibit any boundary-layer 
behaviour a t  this order. 

Use of the expression (3.6) for +o in the leading-order horizontal momentum 
equation (2.16b) shows that there exists a constant pressure gradient to leading order. 
In  fact, 

The condition (3.3d ) then yields the interfacial-position perturbation 

Po2 = 8-  (3.7) 

hi = ( - 4 x 3 + H , z 2 + H 2 x + H 3 ) 8 .  ( 3 4  

The constants H,,  H ,  and H 3  are to be determined by matching the two-term outer 
solution for h, namely h N 1 +Ah, ,  with the corresponding inner solutions near the 
end walls, and using the condition 

hl, (z)dx = 0. s', (3.9) 

This last condition has been obtained from (2.25). The subscript c in (3.9) refers to 
the uniformly valid composite expansion of the free-surface height h. 

To the next order of approximation, the stream function and the temperature field 
satisfy the equations 

$l,,,, = 0, Tl,, = 0, (3.10a, b )  

together with the boundary conditions 
@ I =  = Ti = 0 (Z f (3.11~) 

$1 3 +,, = TIy = 0 (3.11 b )  
(3.11c, d )  

(y = 0 ) ;  

(3.11 e, f) (y = 1); I +lX + 4hlX = 0, -P, = C-lhsxz, 
+1yy + = - Tix, Ti, + LT, = 0 

and the zero-mass-flux condition 
@ i + & = O  (y=1). (3.12) 

In  writing down (3.10)-(3,12), the expressione (3.6) and (3.6) for +o and To have been 
used wherever appropriate. Note that the last condition (3.12) is an integrated form 
of the kinematic boundary condition (3.11 c). 
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We find that (3.13) 

Tl(Y) = 0. (3.14) 

In order to find h, we solve the O(A)  version of the momentum equation (2.16b), and 
find that 

When form (3.15) is combined with condition (3.11d) we find that 

h2rm = QChl, 
which can be integrated to yield 

(3.15) 

(3.16) 

(3.17) 

Once the solution for h, is known completely, the constants K ~ ,  K~ and tc3 in (3.17) can 
be determined by matching the three-term outer solution for h with a three-term 
boundary-layer solution near each end wall and using the incompressibility condition 

ha,(Z)dx = 0. (3.18) 

Here h2&) forms part of the composite expansion for h which is uniformly valid 
throughout the entire length of the cavity. 

Note that the velocity field given by (3.13) is strictly non-parallel. In fact, we shall 
see later that the stream function $1 exhibits a two-cell structure. Since we are only 
interested in obtaining solutions that are correct to O(A2), it  is not necessary to 
determine the higher-order approximations for $. However, in order to complete our 
analysis up to this order, an expression for T2(z, y) must be derived, since this will be 
needed in the calculation of the O(A) boundary-layer stream functions near the end 
walls. The problem for T2 is as follows: 

SI, 

(3.19~) 

(3.19b) 

TZy = 0 (y = 0); (3.19~) 

T2,+LTa = 0 (9 = 1). (3.19d) 

Ta = -- 4feB(3y4-4y3+ 1). (3.20) 
This has the solution 

It is interesting to note that the temperature field, up to  this order, is independent 
of the Biot number. Notice also that T2 does not satisfy the thermal conditions at 
x = f 4, so that thermal boundary layers must be present at  this order. 

4. Boundary-layer flows near the end walls 

x-co-ordinate and set 
To determine the boundary-layer flow near the wall a t  x = - 8, we stretch the 

5 = A-'(*+x), 7 = y. (4.1) 
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This choice is dictated by the need to retain diffusion of heat and vorticity in both 
the x- and y-directions. In these variables, the equations for the stream function 
(2.29) and the temperature (2.16d) become 

V4$ = m+.,($t . , ,  + &tE) - +&?)I + $,,,)I, ( 4 . 2 ~ )  
V2T = iVA($,,Tt-$tTq), (4.2 b)  

where Q2 and V4 are respectively the Laplacian and the biharmonic operators, with 

The associated boundary conditions (2.21) reduce to 

$ = $ t = O ,  T = +  ( E = O ) ;  ( 4 . 3 4  

$ = $I = 0, T,, = 0 (7 = 0 ) ;  (4.38) 

(4.3c) 

(4.3e) I (4.3f 1 

$t 4- $q ht = 0, 

-P + 2 4 1  + h . y  [(hi- 1 )  kCI - h&q -h  +g)I 

(1-h;) ($Iq-$&)-4h&~I = - A - V + q ) * ( T g + h $ &  

= A-3C-lhtt(l+hi)- 5 ( 1 - A 3 c T ) ,  (7 = h).  (4.3d) 

(1 + hi)-& (TI - hgq) + L[T - (4 - AE)] = 0 

An appropriate set of matching conditions must be added to the above equations and 
the boundary conditions. The matching conditions are derived from the requirement 
that, for continuity in the flow structure, the flows in the core and the boundary 
layers must be smoothly connected. This leads to the conditions 

( 4 . 4 4  

(4.4b) 

as A +  0. The subscript L refers to the left-hand boundary layer near x = - 4. Similar 
matching conditions apply a t  the right-hand boundary layer near x = 4. 

We now write the inner expansions 

II. = $ O K  7) +A$1(5,7) + OW2), 

T = Po(& 7) + ATl(& 7) +A2P2(5, 7) + 0 ( A 3 ) ,  

( 4 . 5 4  

(4.5 b) 
(4.5c) 

(4.5d) 

Substitution of these expansions in (4.2) and the boundary conditions (4.3) results 
in the following leading-order problem: 

P = Po(& 7) +A$& 7) + W2), 

h = 1 + AK,(E) + A2h2(E) + O(A3). 

V4fi0 = 0, 

v2Po = 0, 

( 4 . 6 ~ )  

(4.6b) 
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The appropriate matching conditions are 

(4.7a, b )  

(4.7c) 

The conditions (4.7~2, b) follow from matching fi0 with the outer solution (3.6), while 
the condition ( 4 . 7 ~ )  is obtained by matching Po with the leading-order outer solution 
(3.5) for temperature. 

The solution for Po is easily written down : 

TO(f97) = B. (4.8) 

Before we can determine go, we must write down the system determining the next 
correction. This takes the form 

(4.9a) 

(4.9b) 

(4 .94  

(4.9d) 

(4.9e) 

(4.9f) 

(4.99) 
(4.9h) 

In the above we have used the solution (4.8) where appropriate. 
It is easy to see that we can determine pl as well: 

m, r )  = - f .  (4.10) 

The solutions (4.8) and (4.10) reflect the non-boundary-layer character of the tem- 
perature field, since 

T - P 0 + A q = + - A f = - ~ .  (4.11) 

Given the form (4.10), the boundary conditions (4.6e) and (4.99) combine to yield the 
simplified shear-stress condition 

$o&, 1)  = 1-  (4.12) 

Thus, the problem for fi0 is given by (4.6a), the first two conditions of (4.6c, d) ,  
(4.7a, b) and (4.12). 

For analysing the flow in the cold-wall boundary layer, we set 

6 = A-1(& - x ) ,  Y = y, 
and write the expansions 

(4.13) 
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Analogous to the solutions go(& 7) and q(6, v), the solutions for Po((, v) and @,((, v) 
can be obtained by writing the two-term outer solution = -x in terms of the 
inner variables. This gives 

(4.16) 

m, v) = 5. (4.16) 

We now find that the problem for $&, v) becomes identical to that for go(& v), if 6 is 
replaced by 6 and 7 by v everywhere. It will therefore suffice to solve for go only. 
Before proceeding with the derivation of the higher approximations to the stream 
functions, it is necessary to determine the shapes of the interface in these boundary 
layers. 

We therefore consider the problem of finding the interface shape near the end walls, 
and in the process determine the unknown constants in the outer solutions (3.8) and 
(3.17) for h, and h,. For the hot-wall boundary layer near x = -#, we solve (4.6f) 
subject to the boundary condition 

k,(O) = 0, (4.17) 

in case I, and the matching condition 

Po(Q v) = - $3 

(4.18) 

This last condition follows from matching two terms in the outer expansion of h with 
two terms in its inner expansion. The solution for h, is thus 

K,(t) = 0, (4.19) 

with &H,-#H,+H, = -&. (4.20) 

Similarly, in the boundary layer near z = # we have 

h g 6 :  = 0, ( 4 . 2 1 ~ )  

(4.21b) with &(o) = 0, 

The solution for the system (4.21) is given by 

lim A,([) = C( -A + BH, + 412, + H,).  
5-+* 

&(Y) = 0, (4.22) 

and then &Hl + #H2 + H ,  = &. (4.23) 

Since h,(t) = A,( [ )  = 0, the two-term outer expansion for h, namely 

h - 1 +Ah,(z),  (4.24) 

where h,(x) is given by (3.8), is uniformly valid throughout the entire length of the 
cavity. Thus, using this as a composite expansion, we find from the incompressibility 
condition (3.9) that (4.25) 

If we combine (4.20), (4.23) and (4.25), we find that 

H ,  = 0, H ,  = +a, H ,  = 0, (4.26) 

so that the perturbation of the free-surface height from a flat interface is given by 

h,(x) = - &CZ(ZZ- a,. (4.27) 
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The outer expansion for the stream function, correct to O(A2), can now be written 

II. - ayyy-  1)+&Acx(xZ--)p.  (4.28) 

from (3.6) and (3.13) as follows: 

Proceeding in a similar manner, we find at the next order of approximation 

h,(5) = -@E,  &(5) = @ 5 9  (4.29) 
together with 

B 
K2 = 0, K3 = - 356 

K1 = - 
28672' 35840' 

(4.30) 

As a result, the solution for h2(z) becomes 

(4.31) 
ca 

h,(4 = - z o ( x 2 4 ) ( x 4 - z 2 + & ) .  

We now turn to the problem for p2, This takes the form 

v q  = -@$oq, ( 4 . 3 2 ~ )  

(4.32 b d  ) p&, 0) = 0, %)(E, 1) +LF&, 1) = 0, P2(0, 7) = 0, 

with 

and we have used the form (3.20). 

replace tildes. 

satisfies ( 4 . 9 ~ )  subject to the first two conditions of (4.9c, d )  and the conditions 

The problem for $,(5, v) is identical to the system (4.32) if (&a) + (5, v) and carets 

We are now in a position to formulate the problem for $;,. The stream function 

(4.33) 

(4.34) 

fim$1(E97) = fim$y(5,7) = 0. (4.35) 

The condition (4.33) comes from the condition (4 .9e)  with K,(E) E 0, and the condition 
(4.34) comes from the shear-stress balance at  O(AZ)  with h1(& = 0. The conditions 
(4.35) are derived from matching two terms of the inner expansion + - $ + Aq1 with 
its two-term outer expansion (4.28). 

The problem for $1([, v) in the cold-wall boundary layer is the same as that for 
g1(E, T,J) if ( E ,  7) +- (5, v), a/a[+ - a/ag and carets replace tildes. 

The problems for $o(& r), $,(& 7) and g2(& 7) are now solved numerically to deter- 
mine the flow structure near the hot boundary. The numerical scheme consists of a 
13-point finite-difference approximation of the biharmonic operator and a 5-point 
approximation of the Laplacian. The boundary conditions at 5 = 00 are applied a t  
5 = 5. The finite-difference equations are solved using the method of successive over- 
relaxation to expedite convergence. The optimum value of the relaxation parameter 
wept is chosen by trial and error for a fixed system of grid points. For the computation 
of $&, v), wept is found to be 1.5; this value is used in all further computations of the 

6-m 6- 
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FIGURE 3. Leading-order streamlines in the left boundary layer with L = 1 

for caae I (and case 11). 

stream functions. The value of uOpt for the calculation of p2((,r]) is found to be 1.8. 
The results for case I are presented for the following set of parameter values: 

A = 0.2, 6 = 15, L = 0 or 1, = 1, R = 5.  

The large value of c is chosen for clarity of presentation. The numerically determined 
streamlines and the isotherms near the hot boundary are plotted in figures 3-5 for 
surface Biot number L = 1. It is clear from figure 3 that the streamlines are almost 
parallel for ( 2 2. This is to be expected, since the horizontal length scale that charac- 
terizes the flow near the end walls is comparable to the aspect ratio of the cavity. The 
stream functions go([, v), $,(C v) and the temperature field p2([, v) near the cold 
boundary are obtained by invoking the symmetry in the variables 6 and 6. Given 
the boundary-layer solutions, we can construct the composite solutions valid for all 
ZE [ - #,&I. Figure 6 shows these composite streamlines plus the interfacial shape 
correct to O(A2).  Note the stretched scale in the drawing since A = 0.2. The O(A)  
streamlines, y?l(x,y) = constant, are shown in figure 7. As noted above, these form 
a two-cell structure. The effect of variations in the capillary number c on the inter- 
facial shape is shown in figure 8. As 6 increases, the surface tension decreases and the 
interface distorts further from the plane y = 1. 

Computations similar to those above have been carried out for surface Biot number 
L = 0,  the limiting case that represents a sharp mismatch between the thermal con- 
ductivities of the liquid and the gas. There are no qualitative changes in the solutions 
compared to the case with L = I .  For example the isotherms of figure 4 now intersect 
y = 1 at right angles, and are somewhat less densely bunched towards the upper 
left-hand corner. Since the range L E [0, I] encompasses most physically relevant cases, 
we see that the thermal boundary condition only weakly influences the steady 
thermocapillary flow we examine. 
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5. Results for case II: prescribed contact angle 
We consider the case of (2.28) with a contact angle 8 near in. We write? 

tan(8-4n) = mA@, m = O(1). (5.1) 

h'( $) = T mAC. (5.2) 

The contact line conditions (2.28)$ now become 

The analysis for this case is very similar to  that for case I. We shall therefore present 
only the results. As in case I we look for a solution in which the interface is flat to a 
leading approximation, and find that the prescription (5.1) is consistent with such an 
assumption. If a value of m larger than that prescribed in (5.1) is used, a solution that 
has a flat top to a leading approximation cannot be found. The outer solutions for 
the stream function, temperature and the interface shape are given as follows: 

$ = +p(~- 1) + & 4 C ( ~ ( 4 ~ 2 -  3 )+$m( i2~2-  1 ) } ~ 3 + 0 ( 4 ,  ( 5 . 3 ~ )  

T = -x-&A2@(3y4-4y3+ l)+O(A3),  (5.3b) 

(5.3c) h = 1 - & ~ C { X ( ~ X ~ -  3) +*( 1 2 ~ ~ -  1)}+ O(Az).  

The boundary-layer problems for the stream function and the temperature for this 
case are analogous to those in case I. These are solved numerically using the same 

t The form (5.1) is not a statement to the effect that the contact angle depends on A phpically 
but that the mathematical order of magnitude of 6' depends on A. 

$ We choose the contact angles a t  z = f 4 to be equal. However, it  is easy to allow different 
angles through different values of .m for the two sides. This woiild for example allow one receding 
and one advancing angle to appear in the solution. 
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FIGURE 10. Composite streamlines and interface shape with L = 1, 
A = 0.2 and rn = 1 for case 11. 

parameter values as in 94, except that now 6 = 5. The composite streamlines and 
the interface shape correct to O(Aa) are plotted in figures 9 and 10 for the cases when 
m = 0 and m = 1 respectively. The former case corresponds to the interface con- 
tacting the end walls at right angles. Figures 11 and 12 show the O ( A )  perturbations 
of the outer stream functions for m = 0 and 1 respectively. 
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6. Cavity with two interfaces 
Consider a cavity having solid isothermal walls at  x = & 4, but two liquid-gas 

interfaces at  mean positions y = 0 and y = 1. The flow patterns can be constructed 
from the previous analyses by using symmetry conditions about y = 4. For example 
the leading-order outer velocity field is given by 

$ &!/(?I- 1) (2Y - 1). (6.1) 

When the interfaces are pinned at y = 0 and y = 1, as given by the conditions 
(2.27), then we have a version of case I. We write 

hupper N 1 + 4 ( z ) ,  blower N --&(XI, (6.2) 

where h,(x) = - +Cz(xa - a). (6.3) 

When the interfaces have given contact angles a t  y = 0 and y = 1, aa given by the 
conditions (5.2), then we have a version of case 11. We write forms (6.2), where now 

h , ( ~ )  = - i k & { ~ ( 4 ~ ~ -  3)+*(12x2- l)}. (6.4) 

The core temperature in either case I or case I1 is 

T N -x+A2T2+O(A3), (6.5a) 

(6.5b) 
T,= -&B 3y4-4y3+m("y+1)). 1 

( where 

Note that T2 now depends on L. 
The analysis of the boundary-layer flows is similar to that carried out in $$4 and 5,  

and will not be presented here. The leading-order streamlines in the left boundary 
layer are shown in figure 13 for both cases I and 11. The composite streamlines and 
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FIQURE 15. Composite streamlines and the interface shape to order A' for slot flow with two 
interfaces with L = 1, A = 0.2 and m = 0 for caae 11. 

the interface shape for case I are plotted in figure 14. Figures 16 and 16 present the 
composite streamlines and interface shapes for case I1 with m = 0 and m = 1 respec- 
tively. Again, the limit L+O is regular, and the results for L = 0 are qualitatively 
similar to those shown for L = I. 
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FIQURE 16. Composite streamlines and the interface shape to  order A* for slot flow with two 

interfaces with L = 1, A = 0-2 and m = 1 for case 11. 

7. Comments on results for R = O( 1) and M = O( 1) 

The previous work was based on the assumption that to leading order both the 
convective and advective nonlinearities of the governing equations of the core flow 
were negligible, viz R, M = O ( A ) .  Consider, say, the case of the dot having a single 
liquid-gas interface and the contact lines pinned (case I). Let us relax the above 
assumptions so that R, M = O( 1) as A + 0. If we still seek a leading-order core solution 
consisting of a flat top and parallel flow, then we obtain the same stream function +o, 
given by (3.6), and the same temperature distribution To, given by (3.5). 

At  the next order, however, the outer temperature field is given by 

2'' = -&M(3tj4-4tj3+ i), (7.1) 

which is the same distribution as given in (3.20), but it now appears at  an earlier 
order. Hence thermal boundary layers are now present a t  O(A). Furthermore, the 
boundary-layer corrections for + and T, given by (4.2) with EA, l@A = O ( l ) ,  are 
governed by nonlinear balances between diffusion and convection/advection. There 
is a further tight coupling between the boundary-layer temperature correction pl and 
the leading-order stream function go through the shear-stress condition (4.99) and 
the bulk temperature equation (4.2b). Thus a solution for R = O ( l ) ,  M = O(1) having 
a flat top and parallel flow for the leading-order core solution should exist, though the 
complete matching process poses a significant numerical problem. 
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8. Discussions and conclusions 
We have analysed liquid flows in slots whose ends are maintained at fixed tempera- 

ture differences. The flows are driven by thermal differences in surface tension on the 
liquid-gas interfaces. The flows on the interfaces are directed from the hot towards the 
cold end, and return along a region removed from the interfaces. The ends cause 
return flows by inducing axial pressure gradients. These pressure gradients determine 
the deflection of the liquid-gas interfaces due to the balance between normal stress 
(mainly the pressure) and the surface tension times the curvature. 

Four cases have been analysed. The first two are slot flows having one interface 
and one solid surface aa shown in figure 2. Here either the contact lines are fixed or the 
contact angles are fixed. The second two are slot flows having two interfaces where 
either the contact lines me fixed or the contact angles are fixed. 

The analyses are of lubrication type, where we let the Reynolds and Mrtrangoni 
numbers be O(A) and the capillary number be O(A4) and seek asymptotic solutions 
for A + 0 having in the core parallel flow and flat interfaces at leading order. At leading 
order there is a constant axial pressure gradient. Corrections to the core solutions have 
non-parallel flow and surface deformation. The core solutions can be fully determined 
only by matching these outer solutions to inner solutions in the end regions where the 
end walls cause the flows to turn. It is in these end regions that the contact-line condi- 
tions have their effects. Since R = O(A)  and M = O(A), the whole flow is conduction- 
dominated at  leading order, while corrections give the effects of convection and 
advection . 

In  all four cases considered, the flows are quite insensitive to the surface Biot num- 
bers L, and in particular the limit L-+ 0, which is often a good approximation to the 
case of heat loss from a liquid to a gas, is regular. 

I n  all four cases, the leeding-order pressure gradient is directed from the hot end 
towards the cold end. Hence the pressure is higher at the cold end, and the interface 
thus bulges near the cold end and is constricted near the hot end. If the contact lines 
are fixed, then the interface shapes are shown in figure 6. The bulges and constrictions 
are O(A6) and the dynamic contact angles (in physical variables) are O(AG).  If the 
slopes are fixed a t  O(An26), then the interface shapes are shown in figures 9 and 10 
and the contact lines are displaced by O[(l-#m)Ae]. It is not surprising that for 
large-enough surface tension (i.e. small-enough C) surface deflection can be neglected. 
However, the analysis shows that C must be smaller than O(A4) before this happens. 
This is an exceedingly small value. Even for the numerical case illustrated, using the 
relatively large value A = 0.2, C must be smaller than 2 x The outer flow is a 
parallel flow having a parabolic profile plus O(A) corrections, while the temperature 
field is linear in axial co-ordinate plus O(AB) corrections. The leading-order outer 
solutions having parallel flow and flat interfaces continue to be the leading-order outer 
approximations even when the conditions R, M = O(A)  are relaxed. Such solutions 
have been discussed in 5 7. 

The present analysis gives information about the local interfacial shape at, say, 
the cold end. This shape depends on the wetting properties of the liquid (i.e. the 
contact-line conditions). Clearly, these results must be used with caution in application 
to the float-zone geometries shown in figure 1, where the local angles affect the crystal 
surface energy and hence the physical characteristics of the formed crystal. On one 
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hand the present analysis omits the added O( 1) contribution to the mean curvature 
that would be present in the misymmetric float-zone geometry. Davis et al. (1974) 
show that, even if one has a thin cylindrical liquid shell, this modified curvature can 
greatly influence the flow. On the other hand, the present work omits changes of 
volume normally present during solidification. Such changes could greatly affect local 
interfacial shapes and hence local dynamical contact angles. 

This work was supported through a contract no. NAS8-33881 , National Aeronautics 
and Space Administration , Materials-Processing-in-Space Program. 
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